A symplectic non-squeezing theorem for BBM equation
نویسندگان
چکیده
منابع مشابه
Symplectic Non-squeezing of the Kdv Flow
We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle T. The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [13]. Unlike the work of Kuksin [21] which initiated the investigation of non-squeezing results for infinite dimensional Ha...
متن کاملElliptic solutions to a generalized BBM equation
An approach is proposed to obtain some exact explicit solutions in terms of the Weierstrass’ elliptic function ℘ to a generalized Benjamin-Bona-Mahony (BBM) equation. Conditions for periodic and solitary wave like solutions can be expressed compactly in terms of the invariants of ℘. The approach unifies recently established ad-hoc methods to a certain extent. Evaluation of a balancing principle...
متن کاملA Foliated Squeezing Theorem for Geometric Modules
We prove a foliated control theorem for automorphisms of geometric modules. This is the analogue of a result for h-cobordism
متن کاملA symplectic slice theorem
We provide a model for an open invariant neighborhood of any orbit in a symplectic manifold endowed with a canonical proper symmetry. Our results generalize the constructions of Marle [Mar84, Mar85] and Guillemin and Sternberg [GS84] for canonical symmetries that have an associated momentum map. In these papers the momentum map played a crucial role in the construction of the tubular model. The...
متن کاملOn the Ill-posedness Result for the Bbm Equation
We prove that the initial value problem (IVP) for the BBM equation is ill-posed for data in H(R), s < 0 in the sense that the flow-map u0 7→ u(t) that associates to initial data u0 the solution u cannot be continuous at the origin from H(R) to even D′(R) at any fixed t > 0 small enough. This result is sharp.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dynamics of Partial Differential Equations
سال: 2010
ISSN: 1548-159X,2163-7873
DOI: 10.4310/dpde.2010.v7.n4.a1